
CHAPTER 3

Method of diagrams

This chapter is devoted to applications of the compactness theorem. One application is to
show the dramatic failure of first-order logic to distinguish between different cardinalities: we
will show, for instance, that if a first-order theory T in some countable language has an infinite
model, then T has models of all infinite sizes. To show this, we use the method of diagrams.

1. Diagrams

Definition 3.1. If M is a model in a language L, then the collection of quantifier-free
LM -sentences true in M is called the diagram of M and written Diag(M). The collection of
all LM -sentences true in M is called the elementary diagram of M and written ElDiag(M).

Lemma 3.2. The following amount to the same thing:

• A model N of Diag(M).
• An embedding h:M → N .

As do the following:

• A model N of ElDiag(M).
• An elementary embedding h:M → N .

Proof. I suspect that a genuine proof of this lemma would only obscure the main point.
The task is to reflect on the question what it would mean to give a model of Diag(M). It would
involve finding a model N and assigning to each constant cm an interpretation in N in such a
way that if ϕ is quantifier-free and ϕ(cm1 , . . . , cmn) is true in M , then it is true in N as well.
This is the same thing as giving an embedding h:M → N (see also Lemma 1.13). A similar
reflection should make the second point of the lemma clear. �

2. The  Loś-Tarski Theorem

As a first indication of the usefulness of the method of diagrams, we will prove a charac-
terisation theorem for universal theories.

Definition 3.3. A sentence is universal if it starts with a string of universal quantifiers
followed by a quantifier-free formula. A theory is universal if it consists of universal sentences.
A theory has a universal axiomatisation if it has the same class of models as a universal theory
in the same language.

Theorem 3.4. (The  Loś-Tarski Theorem) T has a universal axiomatisation iff models of
T are closed under substructures.
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Proof. It is easy to see that models of a universal theory are closed under substructures,
so we concentrate on the other direction. So let T be a theory such that its models are closed
under substructures. Write

T∀ = {ϕ : T |= ϕ and ϕ is universal }.

Clearly, T |= T∀. We need to prove the converse.

So suppose M is a model of T∀. Now it suffices to show that T ∪ Diag(M) is consistent.
Because once we do that, it will have a model N . But since N is a model of Diag(M), it
will be an extension of M ; and because N is a model of T and models of T are closed under
substructures, M will be a model of T .

So the theorem will follow once we show that T ∪ Diag(M) is consistent. We argue by
contradiction: so suppose T ∪Diag(M) would be inconsistent. Then, by the compactness the-
orem, there are quantifier-free formulas ψ1(m1), . . . , ψn(mn) ∈ Diag(M) which are inconsistent
with T . Write ψ(m): = ψ1(m1) ∧ ψ2(m2) ∧ . . . ∧ ψn(mn). Then ψ(m) is a single formula from
Diag(M) inconsistent with T .

Replace the constants m from M in ψ by variables x and consider the sentence ∃xψ(x);
because the constants from M do not appear in T , the theory T is already inconsistent with
∃xψ(x) (see exercise . . . below). Therefore T |= ¬∃xψ(x) and T |= ∀x¬ψ(x); in other words,
∀x¬ψ(x) ∈ T∀. Since M is a model of T∀, it follows that M |= ∀x¬ψ(x) and M |= ¬ψ(m).
This contradicts ψ(m) ∈ Diag(M). �

3. The theorems of Skolem and Löwenheim

As another application of the compactness theorem we can show that first-order logic is
unable to see the difference between different infinite cardinalities. Two theorems due to Skolem
and Löwenheim make this point in a very clear way.

Definition 3.5. The cardinality of a model is the cardinality of its underlying domain.
The cardinality of a language L is the sum of the cardinalities of its sets of constants, function
symbols and relation symbols.

We will write:

– |X| for the cardinality of a set X,
– |M | for the cardinality of a model M , and
– |L| for the cardinality of a language L.

3.1. Downward. To prove the first theorem due to Skolem and Löwenheim we need a
test for recognising elementary embeddings.

Theorem 3.6. (Tarski-Vaught Test) An embedding h:M → N is elementary if and only
if for any LM -formula ϕ(x): if N |= ∃xϕ(x), then there is an element m ∈ M such that
N |= ϕ(h(m)).

Proof. Let us first check the necessity of the condition: if h:M → N is an elementary
embedding and ϕ(x) is an LM -formula such that N |= ∃xϕ(x), then M |= ∃xϕ(x) as well.
So there is an element m ∈ M such that M |= ϕ(m) and hence N |= ϕ(h(m)), because h is
elementary.
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Conversely, suppose that the condition is satisfied and we wish to prove that

M |= ϕ(m)⇔ N |= ϕ(h(m))

for any L-formula ϕ and any tuple m of parameters from M . The idea is to prove this bi-
implication by induction on the structure of ϕ. To make our lives easier we will assume that
the only logical connectives appearing in ϕ are ∧,¬ and ∃: since every first-order formula is
logically equivalent to one only containing these connectives, we may do this without loss of
generality.

Let us start by noting that the desired equivalence is valid for atomic formulas, since h is
an embedding (see Lemma ??). The induction cases for ∧ and ¬ are trivial, so we are left with
the case of ∃xψ(x,m). The induction hypothesis is

M |= ψ(m,m)⇔ N |= ψ(h(m), h(m))

for all m,m ∈M . Then:

M |= ∃xψ(x,m)⇔ (∃m ∈M)M |= ∃xψ(m,m)⇔
(∃m ∈M)N |= ψ(h(m), h(m))⇔ N |= ∃xϕ(x,m).

(Here we have used the condition in the right to left direction of the last bi-implication.) �

Theorem 3.7. (Downwards Skolem-Löwenheim Theorem) Suppose M is an L-structure
and X ⊆ M . Then there is an elementary substructure N of M with X ⊆ N and |N | ≤
|X|+ |L|+ ℵ0.

Proof. We construct N as
⋃

i∈NNi where the Ni are defined inductively as follows: we
start by putting N0 = X, while

• if i is even, then Ni+1 is obtained from Ni by adding the interpretations of the con-
stants and closing under fM for every function symbol f (that is, we add all elements
of the form fM (n1, . . . , nk) with f an k-ary function symbol in L and n1, . . . , nk ∈ Ni).

• if i is odd, we look at all LNi
-sentences of the form ∃xϕ(x). If such a sentence is true

in M , then we pick a witness n ∈M such that M |= ϕ(n) and put it in Ni+1.

Then the first item guarantees that N is a substructure, while the second item ensures that it
is an elementary substructure (using the Tarski-Vaught test). �

3.2. Upward. To find larger models we again use the method of diagrams.

Theorem 3.8. (Upwards Skolem-Löwenheim Theorem) Suppose M is an infinite L-structure
and κ is a cardinal number with κ ≥ |M |, |L|. Then there is an elementary embedding i:M → N
with |N | = κ.

Proof. Let Γ be the elementary diagram of M and ∆ be the set of sentences {ci 6= cj : i 6=
j ∈ κ} where the ci are κ-many fresh constants. M is a model of any finite subset of Γ ∪∆:
indeed, in any finite subset of Γ ∪ ∆ only finitely many fresh constants ci occur; the idea is
to interpret the ci as different elements in M (which we can always do since the model M
is infinite). Therefore, by the Compactness Theorem, the theory Γ ∪ ∆ has a model A. By
construction M is an elementary substructure of A and |A| ≥ κ. By the downward Downwards
Skolem-Löwenheim Theorem A has an LM -elementary substructure N of cardinality κ. Since
N is still a model of the elementary diagram of M , there is an elementary embedding i:M →
N . �
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4. Exercises

Exercise 1. Assume T is a theory and ϕ(x) is a formula in which the constant c does not
occur.

(a) Prove: T |= ϕ(c) iff T |= ∀xϕ(x).
(b) Prove: T is consistent with ϕ(c) iff T is consistent with ∃xϕ(x).

Exercise 2. A class K of L-structures is a PC∆-class, if there is an extension L′ of L and
an L′-theory T ′ such that K consists of all reducts to L of models of T ′.

Show that a PC∆-class of L-structures is L-elementary if and only if it is closed under
L-elementary substructures.

Exercise 3. (Challenging!) An existential sentence is a sentence which consists of a string
of existential quantifiers followed by a quantifier-free formula.

Show that a theory T can be axiomatised using existential sentences if and only if its models
are closed under extensions.


